Los Dominios Matemáticos, por Jakeukalane.
Texto original. Para inspiraciones a posteriori ver nota.
0. Introducción.
1. Relación de los Dominios Matemáticos con las Esencias.
2. Relación con otras Estructuras Planares.
0. Introducción
Gracias al Alpkatchen ("siempre hay más") se conocen la existencia de numerosas divisiones de la Realidad tremendamente complejas y alejadas de la idea común de los Espacios Planares.
Debido a que los Sercque pueden penetrar (aunque sea brevemente) en el ∞ρ-Milegu, consiguieron contactar con especies que, aún sin contar individualmente con los poderes tan asombrosos como los de las Razas Lttbeh, conocían niveles muy complejos de la Realidad, estratos que otras razas eran capaces de alcanzar y que las propias Razas Lttbeh no habían explorado con anterioridad.
Contactaron con los Noiasanaga, habitantes de "Lo Abstracto", uno de los profundos dominios del Alpkatchen. Gracias a esta extraña especie, los Sercque averiguaron la existencia de los "Mundos Fragmentados Abstractos" (también llamados por los Noiasanaga como "Fragmentos Abstractos") y de los Dominios Matemáticos.
Mientras que los Fragmentos Abstractos fueron terriblemente complejos de definir al 100% (es inherente a ellos permanecer en la indefinición) los Dominios Matemáticos resultaron ser un increíble foco de estudio.
Los Dominios Matemáticos son "Espacios Planares" de tipo abstracto (no todos conforman Espacios propiamente dichos) definidos por operaciones matemáticas que emergen de cada acontecimiento, interacción o lugar en el Milegu.
Es decir, cada cosa que "es" (y cada cosa que "no es") provoca, con su misma existencia (y su no-existencia), una serie de operaciones matemáticas de muy diverso tipo. Los intentos de definir de manera concreta las operaciones y objetos matemáticos producidos por la Realidad han sido muchas veces infructuosos.
Uno de los mejores intentos para comprender la enorme complejidad de los Dominios Matemático fue llevada acabo por los Cxȱ’qre, que desarrollaron una increíble ciencia para describir estas operaciones que emergían de la Realidad y cómo dichas operaciones e interacciones matemáticas provocaban la aparición de nuevos Dominios Matemáticos.
1. Relación de los Dominios Matemáticos con las Esencias
Por su carácter definidor de las Realidades del Milegu se los compara, acertadamente, con las Esencias del Milegu. Una de las diferencias clave de los Dominios Matemáticos es que la información que almacenan dichos Dominios no toma un carácter puntual (como sí lo hacen las Esencias), a pesar de que ni Esencias ni Dominios Matemáticos tengan una entidad física definible sin usar Conceptos Anexos del Milegu (propiedades complejas aparte del Espacio, el Tiempo, la Geometría, las fuerzas elementales, etc., como por ejemplo el Njiruh, el Qnch’ur’u o el Namosë), sino un carácter extensivo (e incluso pueden formarse Espacios en los propios Dominios Matemáticos).
Esta diferencia se entiende más fácilmente cuando comparamos una Esencia de una espada con el Dominio Matemático que define a dicha espada.
En primer lugar, la Esencia de la espada es un objeto metafísico de carácter puntual que contiene toda la información que describe a dicha espada. Sin embargo, el Dominio Matemático de la espada no está definido de manera directa, puesto que los Dominios Matemáticos no describen la Realidad de manera discreta sino continua: el Dominio Matemático "de la espada" no sólo abarca a la propia espada sino que es más extenso, englobando todo su entorno 1.
En segundo lugar, las Esencias del Milegu y los Dominios Matemáticos tienen otra diferencia fundamental: mientras que la "información abstracta" de los objetos se encuentra en las Esencias de manera "pura", en los Dominios Matemáticos está descrita de manera exclusivamente matemática: definiendo toda la información posible de una Esencia, pero trasladada a operaciones y objetos matemáticos exóticos.
La relación entre Esencias del Milegu y Dominios Matemáticos es tan estrecha que muchas especies estudiosas de las Esencias, como los Ilyumë de Echlye, consideran a los Dominios Matemáticos como un tipo especial de Esencia que engloba a toda una Realidad (sería la suma de todas las Esencias de dicha Realidad) y se despliega de manera continua. Es decir, (partes de) los Dominios Matemáticos podrían transformarse en Esencias y viceversa.
2. Relación con otras Estructuras Planares
La relación de los Dominios Matemáticos con otras Estructuras Planares es evidente. En primer lugar, su permanente autodefinición de todo el Milegu en su conjunto hace de los Dominios Matemáticos una entidad autocontenida, equivalente (e igual) a la Figura más perfecta de Todo (de la que sería uno de sus muchos aspectos, aunque los Dominios Matemáticos también definirían cada uno de los otros aspectos de la Figura). Debido a ser una Estructura Planar autocontenida generaría (por sí misma) Ventanas de Contenido: es decir, puntos finitos donde se encuentran enormes porciones del Milegu.
No sólo se relaciona a los Dominios Matemáticos con la Figura más perfecta de Todo sino que también con otras Estructuras Finales como los Ealqum: los Dominios Matemáticos serían también una fuente de información inconmesurable para el crecimiento de la Figura más perfecta de Todo 2.
Por su carácter definitorio de las Realidades y, además, por su carácter matemático, los Dominios Matemáticos han sido comparados con los Planos Estadística, que guardan la información de hechos concretos diferenciados unos de otros, haciendo que los seres que visiten los Planos Estadística puedan cuantificar con exactitud cualquier cosa. Esta información, al ser totalmente exacta, es valiosísima para todo tipo de actividades, desde científicas hasta bélicas.
Sin embargo, el gran problema de los Planos Estadística es que al ser una parte misma de la Figura, son muy difícilmente accesibles.
Por eso, se han puesto en práctica métodos de búsqueda en los Dominios Matemáticos para encontrar allí los mismos datos que aparecen en los Planos Estadística (con resultados mixtos). La lentitud del proceso es tan extrema que resulta prácticamente imposible extraer información de los Dominios Matemáticos, además de estar rodeada de un ruido (de información) muy elevado 3.
La propiedad de los Dominios Matemáticos de describir cualquier situación, objeto o lugar (incluso los pertenecientes a niveles de complejidad elevados —las Profundidades del Alpkatchen—) hacen que muchos estudiosos contemplen la posibilidad de que el Milegu entero pueda ser computable, representado de manera total mediante Planos Computacionales o mediante un Plano Computacional Único (o Absoluto).
Llevando a analizar otras Estructuras Planares, como por ejemplo las Fronteras Lógico-matemáticas, nos encontraríamos con que éstas son una simple superposición de Dominios Matemáticos que emergen y pueden ser analizados en las fronteras entre las Realidades.
*1: Es decir, el Dominio Matemático de una espada que se encuentra en una Realidad concreta (Espacio Planar, Dimensión, Plano, Qadena, etc.), abarca toda esa Realidad. Las Esencias del Milegu también abarcan en su descripción a objetos del entorno, pero sólo con relación al propio objeto y a la propia Esencia. Volver.
*2: Aquí se habla del 0-Milegu y no del ∞p-Milegu. En el 0-Milegu, la Figura, a pesar de ser infinita, puede crecer. Volver.
*3: La propia búsqueda en los Dominios Matemáticos genera nueva información que dificulta la búsqueda. Volver.
Criaturas: Razas Lttbeh (Sercque), Noiasanaga, Cxȱ’qre, Ilyumë de Echlye.
Espacios Planares: Milegu, Realidad, 0-Milegu, ∞p-Milegu. Planos, Dimensiones, Planos Estadística, Planos Computacionales, Plano Computacional Absoluto. Estructuras Finales: Figura más perfecta de Todo, Ealqum. Estructuras Planares: Qadenas, Fronteras Lógico-matemáticas, Ventanas de Contenido. Espacios No-Planares: Lo Abstracto, Mundos Fragmentados Abstractos, Dominios Matemáticos.
Conceptos: Alpkatchen, es-noexiste, Esencias, Conceptos Anexos del Milegu: Njiruh, Qnch’ur’u, Namosë).
Nota I: Me he dado cuenta (a posteriori) que la contraposición Esencia/Dominio Matemático se asemeja bastante (no del todo) a un campo cuántico (Dominio Matemático) con su respectiva excitación del campo/partícula (Esencia).
También he caído en la cuenta que la posibilidad de que el Milegu en su totalidad sea computable niega los Teoremas de Incompletitud de Gödel.
Nota II: Este artículo es completamente ficticio.
Texto: Jakeukalane.
Imagen: Jakeukalane. Imagen original aquí → Dominios Matemáticos (deviantart). Imagen en tamaño completo aquí → Dominios Matemáticos (imagen).
©Hyposs Productions.